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LETTER TO THE EDITOR 

The axial gauge for gravity 

R Delbourgo 
Physics Department, University of Tasmania, Hobart, Australia 7005 
and 
Theoretical Physics Department, Imperial College, Prince Consort Road, London 
SW7 2AZ 

Received 28 April 1981 

Abstract. Although fictitious field loops vanish when the axial gauge condition nPhPv = 0 is 
imposed on the graviton field h, we find that the one-loop infinite counterterms in gravity 
nevertheless involve non-covariant terms such as (n”Rwvn ”)*; this is in contrast to the 
renormalisable Yang-Mills case where axis-dependent infinities do not arise. 

Considerable work has been carried out for Yang-Mills theory in the axial gauge, even 
though a comprehensive determination of the two-loop effects is still lacking. On the 
other hand, the use of the axial gauge for gravity has barely been touched upon (Matsuki 
1979). In this note we wish to point out the main features to be expected in such a gauge 
for gravitation, with particular reference to the one-loop infinities. 

The popularity of the axial gauge (Delbourgo etal1974, Kummer 1975) stems from 
three facts: 

(a) Ward-Takahashi identities assume their simple, traditional forms, 
(b) ghost field loops consequently decouple, (Frenkel 1976) and 
(c) the infinite counter-terms are axis-independent (Konetschny and Kummer 

1975) in any renormalisable theory such as QED or QCD. Thus the &function in those 
theories is immediately related to wavefunction renormalisation. 
While statements (a) and (b) apply just as well to gravity we shall discover that, because 
Einstein gravity is non-renormalisable, the counterterms depend explicitly on the fixed 
quantisation direction n. In expressing our results for gravitons we shall always make an 
analogy with vector mesons to emphasise the points of similarity and also the 
differences. 

We shall take our graviton field to be defined by g,” = 77,’ + Kh’”” in order to render 
the gravitational vertex functions simple. The axial gauge condition n,hFLY = 0, where n 
is a constant Minkowskian vector, can then be imposed by introducing a Lagrangian 
multiplier field 6 ,  and adding the gauge-fixing term 

%, = 3(n,bu + n,b,)h’””. (1) 

Whereas in vector theories (where 5fB = Bn A) no further gauge compensating t e r m  
arise, in gravity we must add to (1) the fictitious particle Lagrangian 
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Despite the presence of this term, Matsuki (1979) has shown on the basis of dimensional 
regularisation that any ghost loop will give zero anyhow because the ghost propagator 
just possesses (k n)-r  singularities. Thus the ghosts effectively decouple from gravita - 
tional processes. Hence all one-loop and higher renormalisation effects come from 
intermediate graviton lines, and in view of gravitational gauge invariance one discovers 
that the graviton self energy is transverse, as Matsuki has anticipated. One might easily 
be led to assert that the gravitational counterterms are automatically generally covari- 
ant and have the form R 2 ,  R 3 ,  etc; after all this is what happens in Yang-Mills 
theory-the infinite counterterm is simply cCF,J””. However, as we shall presently 
demonstrate, this assertion is false; although it is correct to claim that counterterms 
involve the curvature tensor, it is incorrect to assume that they are n -independent. This 
is the big difference between the axial gauge for gravity and for Yang-Mills and it is 
certainly tied to the fact that one theory cannot be renormalised while the other can. 

In order to demonstrate these facts more fully we first construct the propagators 
from the bilinear terms 

(3) 2 2 -1 - ~ ( h ~ , , , ~ h ~ ~ ’ ~  - hCIp,hhuY’h + 2hAA,,h - 2h Y,,uhAIL,A) +i (n  ’Ib’ + nvb@)hw,, 

and the vertex part from the trilinear term 

Skipping over inessential kinematic details, one obtains from (3) the matrix propagator 

(hKA,h,u) (hKA,bu) 
(bK,h@Y) (bK,b,) 

where 

This is completely on a par with Yang-Mills where, instead, one meets 

The vertex part (incoming momenta p ,  q, r with issociated indices as indicated) is read 
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off from (4): 

r K ~ , p , p u ( ~ ,  4, r )  
1 2  2 2 = C  W - b  q ) ( v K F v A u  +vKVvA,)vpr-~(p +q + r  ) v K A v w u v p u  

- i ( p 2 + q 2 + r 2 )  1 v p w v K u v , A  

1 +c $(rKrh + q K q A ) T f i U v P U  '1 [ a ( q K r A  + q h r K ) - T P K p A l ( ~ / L p v U U  + v p U q U p )  

a ( r A p  - 2 p U p p ) v & U v K h  a(rUrU - p d U ) ( v K W v A p  + v K p v A & )  ( 6 )  

(the summation being carried out over distinct permutations) and one verifies that it 
correctly satisfies 

p K r K A , & L Y , p U ( p 9  47 r ,  
1 1 1 1  

= -3fAA- ,u ,pu(r)--ThA- , v . p s ( q )  
1 -$pK ( T A ~ A - ~ , ~ , , , ( ~ )  + v ~ p  A- Ku,,v(q) + T A ~ A - ~ ~ , ~ ~ ( ~ )  + v ~ , , A - ~ ~ , ~ ~ ( r ) ) .  

(7) 

(7') 

With (7) established, it is trivial to prove that the graviton self energy II is transverse, 
p K l l K A K , A , (  p )  = 0 for any respectable regularisation, such as dimensional continuation. 
Matsuki's general argument is thus confirmed. 

One may expand II in terms of the transversal projectors S,,, T,, introduced by 
Kummer (1975), or alternatively in terms of S,, and 

Again this is similar to Yang-Mills, 

P " ~ K I L P ( P ,  4, r )  = A-l~p(q)-A-'pp(r)-  

(8) 2 ( S  + TI,, = d,, = vwLy - p,pY/p . 
We remind the reader that for temporal n = (1; Q), S,O = 0 and Sii = -Sii +pipi/$. This 
then leads to five kinematic covariants? 

1 n K ~ K ' ~ '  = Z [ S K K t s ~ ~ ,  f S,A)SA)~ - 2 S K ~ S K , ~ , ] p 4 A  - + S , A S , , A ~ ~ ~ B  + [SKAdK,Af + d K ~ s K , ~ , ] p 2 $ ' & :  

(9) 

The scalar invariants A to E may be extracted via five independent contractions 
nKnAIIKAK,A+zK'nA',  IIKKK,ArnK'nA',  nKKK,"', n K I I K A K ,  n , IIKAKA. Now if the final result were 
generally covariant, only D and E would carry non-zero infinities and those could be 
related to the usual countertermst: ('t Hooft and Veltman 1974) R,,R'" and R 2 .  
However if A, B and C also possess infinities then they should be associated with 
further counterterms connected with curvature components orthogonal to n, namely 

+ $[dKK,dAA,+ d,A,dA,, - 2 d K ~ d K , ~ , ] p 4 D  + dKAdK$App 4 E. 

A K '  

( n  '"n "R,,,)', n ILn "RJ? and n "R,J? "nA. (10) 

IIKKKtK'=p4(-6D +9E)+12p2p2C+p4(-2A+4B). - - (1 1) 

To find out if such new counterterms are in fact present it suffices to calculate the 
scalar contraction 

t pz signifies [ ( p  * r ~ ) ~ / n * - p ~ ]  for a more general choice of axis n, in (9). 
$ In Yang-Mills theory I I K K ,  = S, , ,p2rN + d,,#p211C is the analogue of (9). There only IIc is infinite and is of 
course related to the wavefunctioncounterterm ( Z ,  - 1)F2. 
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The existence of infinities multiplying p z p z  and p4 would signal axis-dependent coun- 
terterms. We have carried out this calculation and discovered that t 

(12) 
2 9 4  1 9 2 2  8 8 4  ~ K ~ K ' ~ ' ~ C O = K '  In(h2/p ) [ zp  - 7 p  p - 1 

from which we conclude that extra counterterms, beyond the generally covariant oaes, 
will be needed for gravity in the uxial gauge. Presumably the n -dependence persists for 
higher order loops (Van Nieuwenhuizen and Wu 1977) with corresponding R 3 ,  R4, 
counterterms and ever-larger varieties of products involving R and n. Of course for 
pure gravity all these higher R"  corrections disappear on-shell. 

Details of this work will be presented at greater length in a separate paper; where 
absorptive parts of II will be given and the coefficients of all five R infinities will be 
exposed. 

I wish to thank Professor T W B Kibble for hospitality at the Theoretical Physics 
Department, Imperial College, where the bulk of this work was carried out. Also I am 
most grateful to Dr D M Capper for numerous informative discussions and for making 
available his preliminary investigations based on algebraic computer methods. 
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?The method of computation is spelt out in Beven and Delbourgo (1978). The logarithms 
ultraviolet/in$rared, infinity in (12) is construed as an ( n  -4)-' pole in dimensional regularisation. 


